Square Formulas

Perimeter of a square =
$$4a$$

Area of a square = a^2
Diagonal of a Square = $a\sqrt{2}$

Where a is the side of the square.

Rectangle Formulas

Perimeter of a Rectangle =
$$2(l + b)$$

Area of a Rectangle = $l * b$
Diagonal of a Rectangle = $\sqrt{l^2 + b^2}$

Where I is the length of the rectangle and b is the breadth of the rectangle

Circle Formulas

Diameter of
$$circle(d) = 2r$$

 $Circumference$ of $circle(C) = 2\pi r$
 $Area$ of $circle(A) = \pi r^2$

Where r is the radius of the circle, d is the diameter of the circle and c is the circumference of the circle.

Triangle Formulas

$$\begin{aligned} & Perimeter\ of\ a\ triangle = a + b + c \\ & Area\ of\ a\ triangle = \frac{1}{2}bh \end{aligned}$$

Where b is the base of the triangle and h is the height of the triangle.

Cylinder Formulas

Surface area of a cylinder =
$$2\pi r(r+h)$$

Volume of a cylinder = $\pi r^2 h$

Where r is the radius of the circular base of the cylinder and h is the height of the parallel face of the cylinder.

Sphere Formulas

Diameter of a sphere =
$$2r$$

Circumference of a sphere = $2\pi r$
Surface area of a sphere = $4\pi r^2$
Volume of a sphere = $\frac{4}{3}\pi r^3$

Where r is the radius of the sphere

Cone Formulas

Slant height of
$$cone(s) = \sqrt{r^2 + h^2}$$

 $Volume\ of\ cone = \frac{1}{3}\pi r^2 h$
 $Curved\ surface\ area\ of\ cone = \pi rs$
 $Total\ surface\ area\ of\ cone = \pi r(s+r)$

Where r is the radius of cone, h is the height of cone and s is the slant height of the cone.

Density Formulas

Density is calculated using the below formula. It is represented by 'rho'.

$$\rho = \frac{Mass}{Volume}$$
Weight Density formula is given by
$$\rho = \frac{Weight}{Volume}$$
The Density is expressed in Kg/L.

Force Formula

In general, the formula for force is given by

$$F = m \times a$$

Where m = mass, a = acceleration. It is expressed in Newton (N) or Kgm/s^2 .

Acceleration a is given by

$$a = \frac{v}{t}$$

Where v = Velocity and t = time taken

So Force can be given as

$$F = \frac{mv}{t}$$