Square Formulas

Perimeter of a square $=4 a$
Area of a square $=a^{2}$
Diagonal of a Square $=a \sqrt{2}$
Where a is the side of the square.

Rectangle Formulas

Perimeter of a Rectangle $=2(l+b)$
Area of a Rectangle $=l * b$
Diagonal of a Rectangle $=\sqrt{l^{2}+b^{2}}$
Where I is the length of the rectangle and b is the breadth of the rectangle

Circle Formulas

Diameter of $\operatorname{circle}(d)=2 r$
Circumference of $\operatorname{circle}(C)=2 \pi r$
Area of $\operatorname{circle}(A)=\pi r^{2}$
Where r is the radius of the circle, d is the diameter of the circle and c is the circumference of the circle.

Triangle Formulas

Perimeter of a triangle $=a+b+c$
Area of a triangle $=\frac{1}{2} b h$
Where b is the base of the triangle and h is the height of the triangle.

Cylinder Formulas

Surface area of a cylinder $=2 \pi r(r+h)$
Volume of a cylinder $=\pi r^{2} h$

Where r is the radius of the circular base of the cylinder and h is the height of the parallel face of the cylinder.

Sphere Formulas

$$
\begin{array}{r}
\text { Diameter of a sphere }=2 r \\
\text { Circumference of a sphere }=2 \pi r \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3}
\end{array}
$$

Where r is the radius of the sphere

Cone Formulas

Slant height of cone $(s)=\sqrt{r^{2}+h^{2}}$
Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r s$
Total surface area of cone $=\pi r(s+r)$
Where r is the radius of cone, h is the height of cone and s is the slant height of the cone.

Density Formulas

Density is calculated using the below formula. It is represented by 'rho'.
Mass
$\rho=\frac{\text { Volume }}{\text { Vol }}$
Weight Density formula is given by
$\rho=\frac{\text { Weight }}{\text { Volume }}$
The Density is expressed in Kg / L.

Force Formula

In general, the formula for force is given by

$\mathrm{F}=\mathrm{m} \times \mathrm{a}$

Where $\mathrm{m}=$ mass, $\mathrm{a}=$ acceleration. It is expressed in Newton (N) or Kgm $/ \mathrm{s}^{2}$.
Acceleration a is given by

Where $\mathrm{v}=$ Velocity and $\mathrm{t}=$ time taken
So Force can be given as

$$
F=\frac{m v}{t}
$$

